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Background: Complication rates in complex spine surgery range from 25% to 80% in published studies.
Numerous studies have shown that surgeons are not able to accurately predict whether patients are
likely to face post-operative complications, in part due to biases based on individual experience. The pur-
pose of this study was to develop and evaluate a predictive risk model and decision support system that
could accurately predict the likelihood of 30-day postoperative complications in complex spine surgery
based on routinely measured preoperative variables.
Methods: Preoperative and postoperative data were collected for 136 patients by reviewing medical
records. Logistic regression analysis (LRA) was applied to develop the predictive algorithm based on
patient demographic parameters, including age, gender, and co-morbidities, including obesity, diabetes,
hypertension and anemia. We additionally compared the performance of the predictive model to a spine
surgeon’s ability to predict patient complications using signal detection theory statistics representing
sensitivity and response bias (A’ and B” respectively). We developed a decision support system tool, based
on the LRA predictive algorithm, that was able to provide a numeric probabilistic likelihood statistic rep-
resenting an individual patient’s risk of developing a complication within the first 30 days after surgery.
Results: The predictive model was significant (2 = 16.242, p < 0.05), showed good fit, and was calibrated
by using area under the receiver operating characteristics curve analysis (AUROC = 0.712, p < 0.01). The
model yielded a predictive accuracy of 75.0%. It was validated by splitting the data set, comparing subset
models, and testing them with unknown data. Validation also involved comparing the classification of
cases by experts with the classification of cases by the model. The model significantly improved the clas-
sification accuracy of physicians involved in the delivery of complex spine surgical care.
Conclusions: The application of technology and data-driven tools to advanced surgical practice has the
potential to improve decision making quality, service quality and patient safety.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Complex spine surgery, defined as a procedure involving six or
more levels of spinal fusion, is a high-risk undertaking with high

The population of patients with spinal deformity requiring sur-
gical treatment is growing [1,2]. With the move towards value-
based care, surgical care for these patients is being rewarded for
higher quality with controlled cost [2-4]. Efforts to improve the
accuracy of surgical decision-making and to develop data-driven
risk stratification methods are likely to improve patient safety
and outcomes, and thereby increase the overall quality and value
of spine surgery care.
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complication rates. Complication rates range from 10 percent up
to 80 percent [5-12], and are often associated with increased hos-
pital stay, cost and long-term morbidity [9,10,12]. These complica-
tions occur as a result of a complex web of social, physiological and
environmental factors [13].

Preoperative assessment of complication risk in complex spine
surgery is often based on broad prevalence rates and retrospective
percentage statistics. The development of debiasing strategies in
high-risk medical decision making has the potential to increase
service quality and patient safety. Debiasing involves moving away
from intuitive processing towards processing that is more analyti-
cal, evidence-based and system-supported [14]. Robust predictive
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models are one method to improve risk assessment and achieve
gains in service quality. While work on predictive modeling in
spine surgery is progressing [15-20], the application of data-
driven methods for accurately and reliably predicting surgical risk
and patient complications in spine surgery is rare.

The purpose of this study was to generate and calibrate a statis-
tical model to predict the risk of 30-day complications associated
with complex spine surgery. The utility of the model was maxi-
mized by focusing on preoperative variables that were readily
available and easily measurable. We hypothesized that a statistical
model developed using preoperative patient characteristics would
accurately predict the likelihood of 30-day complications. We used
the predictive model to develop a decision support system (DSS)
with a quantified output representing the risk of complication
within 30 days of surgery. We performed an evaluation experiment
to assess the utility of this statistical model-driven DSS in helping
physicians involved in the delivery of complex spine surgical care
to identify patients who were at higher or lower risk of postoper-
ative complications. We hypothesized that the additional informa-
tion provided by the DSS would increase the capability of
physicians to accurately predict whether patients would or would
not go on to experience postoperative complications.

2. Method
2.1. Predictive modeling and DSS development

2.1.1. Participants and data collection

This retrospective predictive modeling study included a total of
136 consecutive spine deformity patients. Inclusion criteria were
as follows. Patients were (1) at least 18 years of age, (2) diagnosed
with adult spinal deformity with a coronal lumbar or thoracic
curve greater than 40 degrees and/or significant sagittal plane
imbalance with SVA greater than 10 cm and LL-PI mismatch of
20 degrees or greater, and (3) treated with a spinal fusion proce-
dure involving six or more vertebral levels. All patients underwent
a complex spine procedure involving a posterior approach. A sub-
set of cases had a secondary minimally invasive lateral approach
for anterior fusion. Surgeries were performed at a single high-
volume institution in the United States with a large multistate
referral pattern for adult spinal deformity cases. Data was collated
for all cases based on queries of the institution’s data warehouse
and abstraction of electronic medical records (EMR). Abstraction
was conducted by two trained abstractors. A random sample of
15% of cases was selected to assess the accuracy of chart abstrac-
tion. Inter-rater data concordance was 100%.

2.1.2. Predictive model development

The primary outcome of interest was the occurrence of a com-
plication event within 30 days of surgery. A complication event
was defined as a patient experiencing one or more of the following:
cardiac event including myocardial infarction, pneumothorax,
pneumonia, wound infection, wound dehiscence, urinary tract
infection, pulmonary embolism, thromboembolism, unplanned
return to surgery and death. The presence of any complication
was coded “1” and absence was coded “0”. Multiple complications
were not additive.

Univariate and multivariate logistic regression analyses (LRA)
were conducted to predict the probability of a postoperative com-
plication event. The odds ratio of each risk factor was indicated. A
set of theoretically and clinically relevant potential predictive vari-
ables was devised based upon the expertise and recommendations
of five senior surgeons. Potential predictive variables needed to be
captured adequately within the EMR for inclusion in this study.
Potential predictors included age, gender, BMI, a history of smoking,

and a preoperative diagnosis of hypertension, anxiety, depression,
diabetes, bipolar disorder, Parkinson’s disease, cancer, and anemia.

Summary statistics were calculated, including frequency and
percentage statistics for categorical variables and means and stan-
dard deviations for continuous variables. In assessing the magni-
tude of associations, we calculated odds ratios and 95%
confidence intervals. For the multivariate LRA, we included vari-
ables that (1) were clinically relevant or (2) achieved a univariate
significance level of 0.2 or less, in line with the methods of other
predictive modeling researchers [21].

To achieve sufficient power in multivariate LRA, the model must
be based on a sample size that is at least 10 times the number of
predictors [22]. In this case, the sample size was sufficient to sub-
stantially exceed this minimum benchmark. The final model con-
tained seven predictor variables (BMI, age, gender, smoking
status, and a preoperative diagnosis of diabetes, hypertension, or
anemia) and was based on 136 cases.

Multivariate LRA models were considered significant if they
achieved a p value less than 0.05. To calibrate the models and estab-
lish an indicator of their performance, discrimination between
high- and low-risk patients was assessed using the area under the
receiver operating curve (AUROC). The model was developed in line
with predictive model development guidelines [13,23-25].
Analyses were conducted using SPSS (SPSS, Chicago, IL).

Three multivariate models were developed and their relative
quality was assessed. Model calibration measures how closely
actual outcomes align with those predicted by the model. Calibra-
tion was measured using the Hosmer-Lemeshow Chi-square statis-
tic [21,26]. Model quality was assessed by reviewing the (1)
model’s chi-square statistic, (2) percentage of correct predictions,
and (3) Nagelkerke’s pseudo-R%. The model that demonstrated
the best fit and the highest percentage of correct predictions was
selected for subsequent validation and experimental evaluation.

To validate the model, we divided our dataset into five distinct
sets. In line with the process articulated by Assman, Cullen &
Schulte (2002) [21], combinations of four of these five sets were
used for generating the model and training the algorithms. The
final set was used for testing the performance of the models on
unknown data. This validation process was conducted for every
possible 4-part, 1-part combination [21]. This internal validation
process showed that the performance of the model was robust.
Results in each of the subsets did not differ substantially from
the model derived from the full data set.

A predictive algorithm was developed using the beta coeffi-
cients and the constant of the model based on the full dataset.

2.1.3. Decision support system development

A DSS was developed to enable the application of the predictive
algorithm created. This DSS is an interactive system that applies the
exponentiated regression equation, weighting each predictive vari-
able independently. The algorithm was mathematically converted
to yield a quantified probability score [24]. The DSS allows for cal-
culation of risk in an individual patient by inputting the value for
each of the seven predictor variables. The output of the DSS is a sin-
gle global percentage statistic, which suggests the likelihood of
complications occurring within 30 days for each individual case.
Fig. 1 shows the design of the DSS dashboard that was developed.
This design adheres to DSS-development guidelines [27,28].

3. Experimental evaluation
3.1. Aims and hypotheses

An experiment was conducted to assess whether the output of
the DSS improved the predictive accuracy of expert physicians



Q.D. Buchlak et al./Journal of Clinical Neuroscience 43 (2017) 247-255 249

The Seattle Spine Score (S3)

Input variables:
rge Gender (-
(years) (F=1,M=0)
Wstoryofsmokng 1] Bwi =
(1=yes,0=no)
Hypertension 0 Anemia [ 1
(1=yes,0=no) (1= yes, 0= no)
Diabetes 1
(1=yes, 0= no)
Probability of complications occurring within 30 days of complex spine surgery:
— %
S3 = 9%

Important Notes:
1. The predictive algorithm driving the S3 has a validated accuracy of 75.0%.

2.This d judgement of

3. defined inal fusic i or levels.

The Seattle Spine Score (S3)

Input variables:

Age Gender (-
(years) F=1,M=0)

History of smoking [ 0] BMI
(1=yes,0=n0)

Hypertension 0 Anemia 0
(1=yes,0=no) (1=yes,0=no)

Diabetes [}

(1=yes,0=no)

|Probability of complications occurring within 30 days of complex spine surgery:

S3 = 4%

Important Notes:
of 75.0%.
judgement of dical te

2. This model asa
3 defined

Fig. 1. Two examples of the DSS interface. One displaying an example of a hypothetical high-risk test case. The other displaying an example of a hypothetical low-risk test

case.

involved in the delivery of complex spine care. The purpose of this
study was to determine the effect of the DSS output (the risk met-
ric) on the ability of physicians to accurately decide whether
patients would or would not experience surgical complications as
a result of complex spine surgery. The experiment aimed to con-
tribute to building an understanding of whether the output of pre-
dictive risk calculators could assist in improving surgical decision
making. It involved collecting and analyzing decision-making data
from a sample of senior physicians directly involved in the delivery
of complex spine surgical care. Hypotheses guiding the design and
implementation of this experimental evaluation study were as
follows.

1. Physicians will be more able to correctly identify whether or
not patients will go on to experience postoperative complica-
tions when they are presented with preoperative patient infor-
mation along with the probabilistic risk metric than when they
are presented with just preoperative patient information alone.

2. The predictions of the model-driven DSS will be more accurate
than the predictions of expert physicians when they do not
have access to the risk metric.

3.2. Participants

Eight senior physicians involved in the delivery of complex
spine surgical care participated in this study. Participants included
orthopaedic surgeons, neurosurgeons, anaesthesiologists, and
physiatrists.

3.3. Design

A within-subjects experiment was conducted to gather data on
how the risk model affected the quality of physician decision mak-
ing. De-identified data was used to create a list of 100 random
cases. Data for each case included the seven relevant DSS model
input variables. The list consisted of data from 26 surgical cases
that experienced postoperative complications within 30 days of
surgery and 74 surgical cases that did not experience complica-
tions. This list was used in three test conditions. The experimenter
sat with participants to mitigate the risk of them using additional
resources to aid in the decision making process.

3.3.1. Condition X: Surgeon only

In this condition, each physician was asked to predict whether
each case would result in complicated outcomes based only on
the seven clinical variables presented. Their prediction for each
case was recorded as a yes or a no response.

3.3.2. Condition Y: Surgeon and DSS

In this condition, the list of cases presented to physicians con-
tained the DSS risk metric for each case. Physicians were informed
of the accuracy of the risk metric. For each case, physicians were
asked to decide whether or not postoperative complications were
likely. Again, their prediction for each case was recorded as a yes
or a no response.

3.3.3. Model only condition

The list was analyzed using the DSS. The resulting risk metric
was recorded for each case. A DSS probability estimate greater than
0.5 suggested that complications would occur. An estimate less
than 0.5 suggested that complications would not occur.

The presentation of stimulus conditions to participants was bal-
anced to control for practice and memory effects. Half of the partic-
ipant pool was presented with condition X first, followed by
condition Y. The other half of the participant pool was presented
with condition Y first, followed by condition X. Assignment to
these conditions was random. The participant pool provided data
for a total of 1600 trials (800 trials in the X-Y condition and 800 tri-
als in the Y-X condition). A power analysis demonstrated that this
sample size was sufficient to allow for significance testing.

3.4. Analysis

Classification performance was compared to observed patient
outcomes. Statistical significance testing was conducted to identify
performance differences between conditions. A-prime (A’) statis-
tics were calculated to assess group discrimination sensitivity. An
A’ of one indicates perfect performance. This means that partici-
pants are able to discriminate between the two patient groups
(complications vs. no-complications) accurately every time. An A’
close to zero indicates that participants are not able to distinguish
the signal from the noise. As predictive accuracy improves, A’
moves closer to one. Response bias was measured using B”. A B”
of negative one indicates an extreme bias in favour of yes
responses. A B” of zero indicates no bias. A B” of positive one indi-
cates an extreme bias in favour of no responses [27].

Retrospective evaluation was conducted in accordance with
Pick (2008). Retrospective evaluation involved comparing the sta-
tistical model predictions with actual outcomes in the retrospec-
tive dataset. Each case was assessed by the DSS and a risk
classification determination was made to assess the accuracy of
the predictive model on the set of cases presented.



250 Q.D. Buchlak et al./Journal of Clinical Neuroscience 43 (2017) 247-255

3.5. Ethics review and approval

Ethics approval for this predictive modeling and experimental
evaluation study was granted by the institution’s IRB (IRB file num-
ber: IRB15133).

4. Results

The mean age of patients was 63.2 years (range 20.0-85.1,
SD = 11.2). Mean BMI was 28.5 (range 17.1-47.0, SD = 6.1). Most
patients (73.5%) were female, 46.3% had a history of smoking,
55.1% had hypertension, 8.1% had diabetes, and 3.7% had preoper-
ative anemia. Complications occurring within 30 days of surgery
were evident in 25.7% of cases.

4.1. Predictive modeling

Univariate LRA indicated that age, BMI, gender, smoking status
and preoperative diagnoses of anemia, diabetes and hypertension
were valid predictor variables to be included in the multivariate
model. Univariate LRA resulted in the exclusion of the following
variables from the multivariate model: Preoperative diagnoses of
depression, anxiety, bipolar, Parkinson’s disease and cancer.

The multivariate LRA model was significant (% =16.242,
p <0.05) and demonstrated a predictive accuracy of 75% (Table 1).
The ability of our model to discriminate between those who expe-
rienced complication from those who did not was measured using
area under the receiver-operating characteristics (AUROC) curve
analysis, with an AUROC curve statistic of 1.0 indicating perfect
discrimination and 0.5 representing chance. The AUROC statistic
obtained by means of the model algorithm was 0.712 (p < 0.01),
indicating a good level of discriminative functionality (Fig. 2).
The risk estimates generated by our model showed very good
agreement with the observed incidence of complications
(Hosmer-Lemeshow 2 = 3.692, p = 0.884; p should be greater than
0.05), further demonstrating the ability of the model to discrimi-
nate between cases that did and did not go on to experience
complications. A classification plot is presented in Fig. 3. This pro-
vides detailed insight into how well the predictive model classified
complicated (1) and uncomplicated (0) cases.

5. Experimental evaluation
5.1. Retrospective evaluation

When the 100 cases were analyzed by the DSS, it demonstrated
a 76% accuracy rate, which was significantly better than chance

Table 1
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Fig. 2. The receiver operating characteristics curve for the multivariate logistic
regression model.

(50%; %2 =21.825, p<0.01). A 0.5 threshold was used as the DSS
decision making criterion. The DSS was significantly more accurate
than participants who were exposed only to the case list that
included patient data alone, and were not exposed to the risk met-
ric at all (x?=21.825, p<0.01). Participants demonstrated an
accuracy of 50%.

5.2. The X-Y Condition: Blinded cases (X), then cases with the risk
metric (Y)

The four participants in this condition were first presented with
the list of 100 cases that did not include the DSS risk metric. These
participants were subsequently presented with the list of 100 cases
that included patient data along with the DSS risk metric. Table 2
presents the results of this test condition.

When participants were first presented with the list of cases
that included just preoperative patient data, their predictive accu-
racy was equal to chance (50.00%). When these participants were
then presented with the list of cases that included the risk metric,

Logistic regression analysis statistics for the predictive model developed and used to drive the DSS.

Variable Predictive Model

Coefficient p OR 95% OR CI

Lower limit Upper limit

Constant —5.164 0.004
Smoking 0.183 0.670 1.200 0.518 2.782
BMI (kg/m?) 0.111 0.001 1.118 1.044 1.197
Diabetes 0.905 0.210 2471 0.601 10.153
Age 0.011 0.594 1.012 0.970 1.055
Sex -0.431 0.386 0.650 0.245 1.720
Hypertension 0.010 0.983 1.010 0.407 2.503
Anemia 0.240 0.815 1.272 0.170 9.522
Model Chi-square (df, p) 16.242 (7, p=0.023)
% Correct Predictions 75.00
Nagelkerke R Square 0.165

Note: OR = odds ratio; CI = confidence interval.
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Fig. 3. Classification plot showing how the model classified cases that did and did not go on to experience postoperative complications.
Table 2
Predictive accuracy statistics for participants who were first presented with case data alone and then were presented with case data accompanied by the risk metric.
Without risk metric — X(this list With risk metric - Y p value’

presented first)

(this list presented second)

n Proportion n Proportion
Correct 200 0.5000 243 0.6075 0.0022
Incorrect 200 0.5000 157 0.3925 0.0022
TrueNegative 143 0.3575 193 0.4825 0.0003
TruePositive 57 0.1425 44 0.1100 0.1667
FalseNegative 47 0.1175 60 0.1500 0.1772
FalsePositive 153 0.3825 103 0.2575 0.0002
Hit rate 0.1425 0.1100 0.1667
False alarm rate 0.3825 0.2575 0.0002
Sensitivity (A’) —-0.0182 0.1151 0.0001
Bias (B”) 0.3181 0.3227 0.8892

" Notes: p values test differences in proportion statistics. The standard statistical significance threshold is used here (0.05).

their predictive accuracy
(x*=9.341, p<0.01).

The proportion of true negatives for these participants
increased significantly between stimulus conditions. When pre-
sented with the list without the risk metric, the proportion of true
negatives was 0.3575. When participants were subsequently pre-
sented with the list that included the risk metric, the proportion
of true negatives increased significantly to 0.4825 (2 =12.812,
p < 0.05). This indicated an improved ability to accurately identify
the patients who did not go on to experience postoperative compli-
cations. The proportion of true positives and false negatives did not
change significantly in this condition. When participants were first
presented with the list of cases without the risk metric, the propor-
tion of false positives was 0.3825. This reduced significantly when
participants were presented with the cases accompanied by the
risk metric (0.2575; 2 = 13.343, p < 0.05). A false positive occurs
when a participant predicts that a patient will experience a postop-
erative complication and the patient does not. The risk metric sig-
nificantly reduced this type of prediction error.

Participants presented with just patient data first were not able
to discriminate between cases that were likely to experience post-
operative complications and those that were not (A’ = —0.0182).
When these participants were then presented with the list of cases
that included the risk metric, their ability to discriminate between
complicated and uncomplicated cases improved significantly
(A’ =0.1151; %% =30.150, p < 0.01). Response bias (B”) did not dif-
fer between conditions.

improved significantly to 60.75%

5.3. The Y-X condition: Cases with the risk metric (Y), then blinded
cases (X)

The four participants in this condition were first presented with
the list of 100 cases that included patient data and the DSS risk
metric. These participants were subsequently presented with the
blinded list of 100 cases, which did not include the DSS risk metric.
Table 3 presents the results from this test condition.

When participants were first presented with the list of cases
that included patient data along with the risk metric, their predic-
tive accuracy was significantly higher than chance (50.00% com-
pared to 60.50%; y?=8.907, p<0.01). When these participants
were then presented with the list of cases that did not include
the risk metric, their predictive accuracy remained significantly
higher than chance (50.00% compared to 63.50%; y*=14.832,
p < 0.05), but did not improve significantly (60.50% vs. 63.50%).

The proportion of true negatives, true positives, false negatives
and false positives did not change significantly when comparing
participant performance on each of the stimulus lists in this Y-X
condition.

Participants who were first presented with the list of patient data
that included the risk metric demonstrated a low level of sensitivity
(A’ =0.1265). This improved significantly, though, when they were
subsequently presented with the list of case data that did not include
the risk metric (A’ = 0.2279; %2 = 14.087, p < 0.05). Participants were
more able to discriminate between groups in the blinded condition.
This result was counterintuitive and suggested a carry-over effect
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Table 3

Predictive accuracy statistics for participants who were firstly presented with case data accompanied by the risk metric and then were presented with case data alone.

With risk metric — Y(this list Without risk metric — X(this list p value’

presented first) presented second)

n Proportion n Proportion
Correct 242 0.6050 254 0.6350 0.3824
Incorrect 158 0.3950 146 0.3650 0.3824
TrueNegative 201 0.5025 210 0.5250 0.5246
TruePositive 141 0.1025 44 0.1100 0.7309
FalseNegative 63 0.1575 60 0.1500 0.7689
FalsePositive 95 0.2375 86 0.2150 0.4472
Hit rate 0.1025 0.1100 0.7309
False alarm rate 0.2375 0.2150 0.4472
Sensitivity (A’) 0.1265 0.2279 0.0002
Bias (B”) 0.2658 0.3263 0.0611

" Notes: p values test differences in proportion statistics. The standard statistical significance threshold is used here (0.05).

associated with the risk metric to the blinded condition. Response
bias (B”) did not differ between conditions.

5.4. Analysis between X-Y and Y-X presentation conditions

In the X-Y condition, when participants were presented with
the blinded stimuli first (patient data only), followed by the stimuli
including the risk metric, their predictive performance on the
blinded list was equal to chance (0.5000). This suggested that these
participants were truly blind and that they experienced no risk-
metric-related problem solving advantage.

In the Y-X condition, however, when participants were pre-
sented with the blinded stimuli second, after having been exposed
to the stimuli including the risk metric, their predictive perfor-
mance was significantly higher than those completing the same list
in the X-Y condition (0.5000 vs. 0.6350; 2 = 14.832, p < 0.01). This
suggested that these participants were not truly blind when pre-
sented with the blinded stimulus list that did not include the risk
metric. It appears that these participants were able to carry over
a problem solving advantage to the blinded stimuli, after having
been exposed to the risk metric in the previous stimulus list.

This proposition is also supported by considering the A’ metrics
between the X-Y versus the Y-X conditions. The A’ statistic in the
X-Y condition for the list that included the risk metric
(A’ =0.1151) was essentially equivalent to the A’ statistic in the
Y-X condition that included the risk metric (A’ =0.1265). It did
not differ significantly. However, the A’ statistic in the Y-X condi-
tion for the blinded list (no risk metric presented; A’ =0.2279)
was significantly higher than the A’ statistic in the X-Y condition
for the same blinded list (A’ = —0.0182; %2 = 81.401, p < 0.01). This,
again, suggests that a problem solving advantage was carried over
in the Y-X condition when participants were required to complete
the list of cases that included the risk metric first, and then were
required to complete the list of cases that did not include the risk
metric.

When interviewed after the experimental tasks, some partici-
pants stated that they were able to spot trends in the data when
they were provided with the risk metric along with patient data
(e.g., cases with diabetes had a high risk metric). They were able
to develop problem solving strategies that they could then employ
when considering the subsequent blinded list.

6. Discussion

Predictive modeling has previously been applied to high-risk
surgical procedures [18], although these efforts appear to rarely
be translated into usable DSS to effectively support clinical deci-
sion making. Systems that have been created in other fields are
often complex and involve an intermediate scoring system. Fur-

thermore, they often yield output that is not readily interpretable
[13,28,29].

This study was designed to develop a predictive model and an
efficiently usable DSS that could accurately predict the likelihood
that complex spine surgery patients would experience complica-
tions. The study was also designed to determine whether or not
this predictive model-driven DSS improved the decision making
quality and problem solving performance of senior physicians
involved in the delivery of complex spine surgical care. The exper-
iment was focused on evaluating the effect of providing a cognitive
aid (a quantified risk metric) on the problem solving process (risk
prediction). Results supported the proposed hypotheses and the
core proposition of cognitive fit theory.

When physicians were provided the probabilistic risk metric, in
addition to preoperative patient information (BMI, sex, age, and
diabetes, anemia, hypertension and smoking status), they were
more able to accurately predict whether or not patients went on
to experience postoperative complications than when surgeons
were presented with preoperative patient information alone. The
model-driven DSS alone performed better than expert physicians
alone, who only had access to the preoperative patient data and
did not have access to the risk metric, in correctly identifying the
surgical cases that went on to experience postoperative complica-
tions. The DSS also performed better than expert physicians even
when the physicians had access to the risk metric. The ability of
complex spine surgeons to discriminate between cases that went
on to experience complications and those that did not, improved
when they were exposed to the DSS risk metric. Error avoidance
was also improved when surgeons had access to the risk metric.

Cognitive fit theory proposes that when people are presented
with a stimulus that aligns with the problem solving domain and
task, their problem solving performance improves [30,31]. The
probabilistic risk metric is a quantitative synthesis of patient risk
factors. This study suggested that it afforded a powerful problem
solving advantage for physicians. Results supported the core
proposition of cognitive fit theory. When participants were pre-
sented with the list of cases without the risk metric, followed by
the list of cases with the risk metric, their predictive accuracy
improved significantly. Additionally, when they were presented
with the list of cases that included the risk metric and then the list
of cases without it, their performance on both lists was signifi-
cantly better than chance. These results suggested that the risk
metric helped with the problem solving process, even at a later
time when it was not present in a subsequent stimulus list. It
appears that the risk metric allowed physicians to spot trends in
the data and develop problem solving heuristics that could then
be employed at a later time.

The risks of complex spine surgery can be broken down into
intraoperative, short-term post-operative, and long-term risks.
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Intraoperative complications include severe blood loss, surgeon
error, coagulopathy, blindness, neurologic injury, hypotensive
sequelae and death [32,33]. Short-term complications (within
30 days of surgery) include infection, thromboembolism, reopera-
tion, poor wound healing, hardware-related problems, neurologic
problems, and complications arising from comorbid conditions.
Long-term complications (more than 90 days after surgery) include
infection, pseudoarthrosis, proximal and distal junctional failure,
and hardware failure [15,29,34-39]. This study focused on compli-
cations presenting within 30 days after surgery because these
complications have a direct impact on patient morbidity, mortality,
and length of stay [8,40].

We developed a predictive model to assess this risk of compli-
cations based on a collection of routinely collected preoperative
variables. These variables are easily, affordably, routinely and reli-
ably measured [41]. The model provided good predictive differen-
tiation between high and low risk patients. Our findings align with
previous research [16,18]. BMI is a predictor of various complica-
tions for patients undergoing spine surgery [42,43] and diabetes
is a predictor for the development of postoperative infection after
spine surgery [44]. The remaining predictive variables were age,
gender, smoking history, preoperative anemia, and hypertension.
These variables have been linked to poorer outcomes after surgical
intervention [12,17,45,46]. Negative outcomes may not arise
directly from any one factor but may instead be the result of inter-
actions amongst a collection of risk factors [13]. The interaction
amongst these factors and their differential weighting can be cap-
tured in the multivariate predictive modeling process. Despite
publications describing an increased risk of complications in
patients with a prior history of depression and anxiety [16,46],
the addition of these variables into the model decreased the accu-
racy of predicting postoperative complications in this study. This
may have been due to insufficient data. Further studies investigat-
ing the predictive power of psychological variables are warranted.

In order to make the predictive statistical model usable for clin-
icians, a DSS was created. Key design principles guiding the devel-
opment of our DSS were usability, efficiency, and clarity. The use of
well-designed DSS can improve the quality of decision making,
facilitate rapid insight, and aid accurate interpretation and plan-
ning [47,48]. This DSS generates a real-time, empirically-based,
probabilistic estimate of a patient’s risk of post-surgical complica-
tions with high accuracy.

The complexity of surgical decision making, particularly with
regard to the assessment of risk, may lead to the use of cognitive
heuristics [49], wherein a limited number of familiar or otherwise
salient variables are considered more strongly, based on experi-
ence and preference, at the expense of others. Focusing on a small
collection of risk factors may yield an inaccurate overall surgical
risk assessment and result in suboptimal medical decision making
[13]. Human reasoning and decision-making processes in the
healthcare setting are often based on the use of heuristics and
are compromised by cognitive and affective biases and errors. Con-
sistency of judgment can be low [14,50,51], as biases influence
assessments of surgical risk and the nature of the recommenda-
tions made to patients [52-54]. Mitigating these biases and errors
is an important goal [ 14]. Factors like fatigue, sleep deprivation and
cognitive overload are important determinants that predispose
decision makers to the inadvertent tendency towards bias and
the increased likelihood of error [14].

Evidence-based medicine involves the application of decision
theory to mitigate cognitive limitations and reduce systematic
biases and errors [55]. The application of the DSS tool developed
here significantly improved the ability of physicians to accurately
predict whether or not patients would be likely to experience post-

operative complications, suggesting that the DSS was able to pos-
itively influence the quality of clinical judgment. By providing a
clear prediction of risk, it may allow the surgeon and pre-
operative surgical review team to allocate more cognitive
resources to other necessary considerations that may be more dif-
ficult to quantify, including social environment factors, and the
specific needs of the patient and their family. This tool may also
provide objective evidence of risk to help guide discussion in mul-
tidisciplinary preoperative clearance-for-surgery conferences
[32,56]. Use of this tool adds negligible cost to the care of a com-
plex spine patient, has the potential to improve outcomes, and is
likely to increase the overall value of complex spine care, which
may have reimbursement and competitive ramifications in the
changing healthcare market [16,19,57]. Finally, this type of tool
can facilitate the efficient and clear communication of risks to
patients, thereby enhancing the informed consent process.

The predictive DSS developed here was designed for use in adult
spinal deformity patients and was derived from a sample of
patients at a single institution, limiting the ability to generalize this
predictive algorithm to other institutions. It is important to note
and consider, though, that inter-institutional generalizability was
not the goal of this study. Each institution has its own way of deliv-
ering complex spine care and each institution has its own surgery-
related risk profile [58-60]. Some institutions implement system-
atic care processes that have been shown to reduce risk and
improve patient safety. Other institutions do not. Examples of
these risk reduction processes include multidisciplinary patient
case review conferences, a dual surgeon approach in the operating
room and intraoperative coagulopathy monitoring [32]. Surgical
outcomes and systemic risk profiles are likely to differ between
institutions due to various factors including perioperative organi-
zational processes, surgeon skill and the degree and quality of
postoperative support. Because risk profiles vary by institution,
the only forward-looking ways to accurately quantify surgical risk
are to either (1) minimize inter-institutional risk variability by
ensuring consistent care processes across institutions and then
build general predictive models, or (2) generate institution-
specific predictive risk models to account for each institution’s
own local risk profile. Large-scale, generalized predictive models
based on large datasets from many institutions may be a useful
low-fidelity risk assessment tool for institutions unable to create
their own local risk models. However, we cannot be confident in
the accuracy of these large general models at the local level, unless
appropriate validation studies are conducted. While variability in
care delivery exists, institution-specific risk modeling is a useful
way to accurately quantify risk and confidently provide patients
with the most accurate quantified risk assessment information.
This analysis underscores the need for each healthcare system to
perform similar analyses to maximize the quality of their own risk
stratification processes.

A limitation of this study was our classification of the smoking
variable, which was split into the categories of “smoker” and
“never smoked.” Patients in the smoker category were people
who had smoked at any point in their life and may have stopped
smoking well before their operation. The predictive strength of this
variable may be increased by increasing smoking status categoriza-
tion granularity, as research suggests that health status can
improve after smoking cessation [61,62]. This study did not include
neurologic complications. The frequency of these outcomes was
very low and difficult to characterize. Future studies with larger
samples would do well to include this variable.

As the complexity of medical decision making increases [63],
this type of evidence-based data-driven DSS tool facilitates accu-
rate risk stratification in complex spine surgery in a way that is
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clinically useful. DSS can improve the quality, value and safety of
complex spine surgery care. The DSS tool’s usability, simplicity
and accuracy allow it to rapidly become an element of standard
practice and to sharpen the accuracy of clinical decision making
in favour of patient safety. We advocate for the development of
similar predictive DSS at other institutions and for their application
as an integral component of a broader systematic approach to
patient evaluation.
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